MIXED r-STIRLING NUMBERS OF THE SECOND KIND
نویسندگان
چکیده
The Stirling number of the second kind {k} counts the number of ways to partition a set of n labeled balls into k non-empty unlabeled cells. We extend this problem and give a new statement of the r-Stirling numbers of the second kind and r-Bell numbers. We also introduce the r-mixed Stirling number of the second kind and r-mixed Bell numbers. As an application of our results we obtain a formula for the number of ways to write an integer m > 0 in the form m1 ·m2 · . . . ·mk, where k > 1 and mi’s are positive integers greater than 1.
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND
In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...
متن کاملA generalized recurrence formula for Stirling numbers and related sequences
In this note, we provide a combinatorial proof of a generalized recurrence formula satisfied by the Stirling numbers of the second kind. We obtain two extensions of this formula, one in terms of r-Whitney numbers and another in terms of q-Stirling numbers of Carlitz. Modifying our proof yields analogous formulas satisfied by the r-Stirling numbers of the first kind and by the r-Lah numbers.
متن کاملStirling number of the fourth kind and lucky partitions of a finite set
The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016